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Within the limits of Newton's formula, a solution of the problem of designing axisymmetric nose shapes that minimize wave drag 
for given volume and maximum admissible size is presented. The solution is obtained both in the slender-body approximation 
and in the complete formulation (without assuming a small angle between the axis of the body and the tangent to its contour). 
In both formulations, the optimum contours, besides a two-sided extremum segment, may contain a cylindrical generator - a 
boundary extremum segment with respect to the maximum admissible radial coordinate. In addition, in the complete formulation 
the optimum contours may include a leading or trailing fiat end - a boundary extremum segment in the sense of both the 
longitudinal coordinate and the limit of applicability of Newton's formula. Determination of the drag coefficient of the nose 
shapes designed using numerical integration of the equations of the axisymmetric flow of an ideal gas confirmed the advantages 
of convex configurations. In the same approximation, the drag of optimum nose shapes (within the limits of Newton's formula) 
with concave segments may exceed the drag of equivalent cones. The formulation of the variational problem modified for such 
cases (in particular, with the fixed specification of the volume replaced by a lower bound) yields Newton's solution with a free 
volume. �9 2005 Elsevier Ltd. All rights reserved. 

1. T H E  O P T I M U M  N O S E  S H A P E S  I N  T H E  S L E N D E R - B O D Y  
A P P R O X I M A T I O N  

Consider the problem of designing an axisymmetric nose shape which, when the pressurep at the surface 
of a body of fixed base radius R, fixed length L and fixed volume D is determined by Newton's formula, 
has the minimum wave drag D. As in [1], the problem will first be solved in the slender-body 
approximation. The solution constructed in [1] is incomplete, because for given D and relative thickness 
x = R / L  the equations and conditions obtained there permit the design of optimum nose shapes only 
over a quarter of the range of values of the coefficient C~ = D/(r~R2L). 

Newton's formula [1-3] gives the pressure on the nose shape (i f  in Fig. la)  as 

2 �9 2 q ~P-+ ~,2 q p-V2~ (1.1) p = p~+p~V~sm 0 = p~+ = 
l + X '2 

where p is the density, V is the velocity, x = x(r)  is the equation of the generator, x' = dx/dr, and the 
subscript ~ indicates the parameters of the free stream directed along the x axis. The part of the formula 
for the pressure is written in the thin-boy approximation (x '2 -> 1). 

For the coefficient Ca and the wave drag coefficient Cd of a slender nose shape, using formula (1.1) 
we have (~' = d~/dq)  

R 1 

Cu ~ 1 2 
- - -  = 2 ~x 'r  dr = ~ ' r l 2 d ~  

l tR2L R L o o 
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x r R ' 

The variation of the Lagrange functional is found to be 

I 

r = 2% ---Scd + ~'C ~ .~ !(1~ ~'~'1~2)d1~ 

1 

8(:I) = ! [ ( ~ 3 -  ~,rl2)'8~ + ~,~4(fi~'>2]drl + (~,r12- ~,~3)8~ f (1.3) 

where ~, is a contact Lagrange multiplier, the prime denotes differentiation with respect to 11, and 8~ 
and fit' are the variations of ~ and ~' - the differences of the varied and unvaried functions for fixed rl. 
For given coordinates of the end points 6~i = 6~f = 0. For fixed Ca and x the variations of �9 and Cd 
have the same sign, and by formula (1.3) the necessary conditions for a minimum of Ca become 

(2TI _ ~,~2~ ' 3_~n_> 0 ; = o ,  

The second condition (Legendre's condition) is satisfied for all generators, while the first, after integrating 
and solving for ~', reduces to the following equation (C is a constant of integration) 

~' = (2rl)U3/(C + ~,1~2) I/3 (1.4) 

By the definition of ~ and rl we have ~(0) = 0 and ~(1) = 1. Integrating Eq. (1.4) talking these 
conditions into account, we obtain the equation of the extremal i f  in the form 

I(~, k) ~,_ __d~ = T~ 1/3 k = --~' 
= I(1, k) '  drl l(1,  k ) ( 1 . k r l 2 )  u3, C 

rl ~ l/3 d~ 
l(rl' k ) = ! ( l~ -k ;2 )  1/3 - 2I~ k ) - ~ ( 1 -  kr12)21311413 

)1 
10(r I, k) = f(1 - k~2)2/3~U3d~ 

0 

By formulae (1.2) and (1.5) 

Cr~ = In(k  ), C a = "c21d(k) 
1 

1 rl7/adrl 1 
l•(k) = i(1, k)! (  1 _-k-~U3 = kl(1,  k)[lo(1, k , - 3 ( 1 -  k)2/3], 

(1.5) 

Id(k ) = 212(1, k)10(1, k) 

(1.6) 
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At first sight, the choice of the constant k seems to permit In(k), and accordingly also Cn, to take 
arbitrary values. We shall show that this apparent possibility is not realizable. Let us find the derivative 
dWd~ at the p o i n t f o f  the extremal generator and determine Cn and Cd for a few characteristic values 
of k. By the second formula of (1.5), if 1] = 1If = 1, we have 

drl) = I(1 ,  k) (1  - k )  It~ (1.7) 

If follows from the formula for I(1, k) that I(1, k) is a continuous function of k at k = 1. Consequently, 
the integral I(1, k), being positive for k ___ 1, maintains its sign in a finite neighbourhood of the point 
k = 1 and at k > 1. In that neighbourhood, as is clear from Eq. (1.7), (dq/d~)f < 0, that is, such extremals 
if approach the point f from above, having at x < L segments with r > R, which are forbidden by the 
formulation of the problem. Besides the violation of the size constraint r < R, dictated by the formulation 
of the problem, Newton's formula is not valid on valid on the extremal if on the shadow side of the 
aforementioned segments; the condition for Newton's formula to be applicable in this problem is 
[2, 4, 5] 

0 < 0 < ~/2 (1.8) 

Thus, temporarily leaving aside the not yet excluded possibility of a change in the sign of the integral 
I(1, k) for some k = k .  > 1, we must assume that the constant may take values k < 1. By Eq. (1.7), the 
extremal corresponding to k = 1 has a horizontal tangent at the point f. As shown below, such an extremal 
plays an important role in the solution of our problem. Lets us calculate the corresponding coefficients 
Cnl and Cal. For k = 1 formulae (1.6) give 

I 
Cf]l = 2' Cdl = Z21d(1) = 8X2i~(l,a 1) (1 .9)  

By the equality I(1, 1) = 2/0(1, 1) and the value found numerically for the integral I0(1, 1), we find 
for the contour in a small neighbourhood of the leading point and for the coefficients Cnl and Cdl 

~=0.73rl 4r3, Cnl = ~, Call = 1.0822Z 2 0"2706X2 4 ,  (1.10) 

The constant k = 0 corresponds to ~. = 0, which is equivalent to the problem of designing a 
"Newtonian" optimum nose shape for given x in a free volume. The Newtonian nose shape has minimum 
drag, and the corresponding parameters are 

2 27 2 = 27 x2 
= r l ~ '  Ca~ = 5' Ca~ = ~'c 200C_~no 

(1.11) 

Because of the differences in the definitions of Cd and x, the coefficient 27/32 in the formula for Cdo is 
twice as large as the analogous coefficient obtained in [1]. 

By the formulae of (1.10) and (1.11), the slender-body condition is violated at the leading point, where 
x' = x~' = ~o, and in its neighbourhood. However, this has little influence on the drag of the entire nose 
shape, because in this case, by the second formula of (1.2), the contribution to Cd of the 
neighbourhood of a tip of relative radius rl is small (proportional to rl4/3). 

If the volume and base radius are given but the length of the nose shape is free, the coordinate x in 
the formulation of the variational problem must be in units not of L but of R, introducing a variable 
~o = x/R. After that, x in formulae (1.2) and (1.3) is replaced by 1, and ~ by ~o. As a result, the condition 
determining the optimum length is obtained by equating the coefficient of ~ '  to zero in the otherwise 
unchanged expression (1.3) for f~ .  This is equivalent to equating the constant of integration C in Eq. 
(1.4) to zero and letting the constant k in formula (1.5) equal "minus infinity." This last operation formally 
e 2 2 2 z quivalent to replacing the quantities (1 - k~ ) and (1 - k~ ) in (1.5) and (1.6) by rl and ~ ,  respectively. 
As a result, on returning to the variable ~ = x/L = x~ ~ where, unlike the previous case, L is not a given 
quantity but an unknown length, we obtain 

1 27 2 = 27 2 
= 11 ~ ,  Cn (~  ) = ~, Cat_~ ) = ~-~x 256cmnc_,.)x (1.12) 
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Although by what has just been said the second formula of (1.12) serves to determine x when 
Ca(~) is given, it may also be used to determine the quantity Ca(~), which for fixed x corresponds to 
k . . . .  Thus, by formulae (1.10)-(1.12), for any given x, variation of k from 1 to --oo gives the values 
of xCa for the optimum nose shapes in the range [1/4, 1/2]. On the other hand, corresponding to the 
condition (1.8) for the applicability of Newton's formula (1.1), we have the nose shapes from a trailing 
flat end: x = L, 0 < r < R to blunt cylinder: x = 0, 0 < r _ R; 0 < x _ L, r = R. The coefficient Ca for 
these varies from 0 to 1. True, the slender-body approximation becomes meaningless at a flat end 
(x '2 >>.1). However, even if this as yet mathematically unformulated restriction is taken into account, 
the difference between the interval [1/4, 1/2] we have found and the possible interval [0, 1] within which 
the coefficient Ca is varied, which is four times longer, indicates that the solution we have constructed 
is incomplete. 

Remarks. 1. The reason for the aforementioned incompleteness is that the solution of the problem, 
whether here or in [1], disregarded certain constraints which are implicitly taken for granted but not 
automatically valid. Among these is constraint (1.8) on the inclination 0 of the tangent to the generator, 
and the constraints on size, 

O < r < R ,  O<_x<L, or 0<11<1,  0 < ~ < 1  (1.13) 

The first of these constraints was indeed used above, but only to reject k values in excess of unity. 
2. When the design of optimum nose shapes is considered without any assumptions about their 

thinness, whether for given sizes [4] or for a given volume and base radius [5], the constraints (1.8) 
imposed on the angle and the length coordinate (1.13) play a decisive role. Because of them, the optimum 
contour in the first problem, for any x values, contains a leading fiat end [2--4] - a boundary extremum 
segment in the sense of both x and 0. The size of the fiat end, which remains finite for finite values of 
x, tends to zero as x ~ 0. The obligatory appearance of a fiat end in an optimum nose shape of the 
dimensions given has also been established when the problem is solved in the approximation of the 
complete Euler equations [6]. In the thin-body approximation, a "trace" of the fiat end in the same 
problem is the vertical tangent to the contour of the nose shape at its leading point. In the second 
problem, with 0 < C~Jx < 13/30, the same constraints lead to a fiat endx = L - a boundary extremum 
segment with a protruding sharp pin [2, 5]. In both problems, at the junction point of the extremal (a 
two-sided extremum segment) and the fiat end one has 0 = 45 ~ on the extremal, but 0 < 45 ~ at all points 
of the extremal. In the first problem, Legendre overlooked (or misunderstood) this last inequality, already 
obtained by Newton [3]. Instead, he established a weaker condition (Legendre's condition), 
0 ___ 60 ~ It has been shown [2] that, without the thin-body assumption, the same condition 0 _< 45 ~ must 
hold on the extremal even when the radial size and volume of the nose shape are given. 

Remarks 1 and 2 hold when solving problems similar to that considered here, but without the slender- 
body assumption. Since, in view of the simplified version of formula (1.1), that assumption yields infinite 
pressure at x' = 0, this surely eliminates flat endsx = 0 and x = L from the desired optimum nose shape. 
Under those conditions, in view of the constraints (1.13), the only possible remaining boundary extremum 
segments are the segment r = 0 or q = 0 of the axis of symmetry and the segment r = R or 1] = 1 of 
the generator of cylinder. The conditions for their connection (at the point d in Fig. lb) to the extremal 
(two-sided extremum segment) are derived from suitably formulated transversality conditions. These 
conditions, as can be shown, reduce to the requirement of smooth attachment, that is, the equality 
(dq/d~)d = 0 at the initial or final point (for the upper or lower generator, respectively, in Fig. lb) of 
the extremal. The volume and drag of the optimum nose shape with a contour containing a segment 
of the axis of symmetry id do not differ from their values for a nose shape which, corresponding to 
k = --oo, is of length Ll  for 0 < l < 1. Therefore, by (1.12), 

l 2 7 ( R )  2 27"~2 C d ( ~ ) =  27'~2, 0_<1_<1 
Co = 4' Cd = 16kLl) - i - ~ -  -~ 256C""--'~ (1.14) 

In fact, according to the formulation of the problem, the segment/d of the axis of symmetry, which 
makes a zero contribution to both the volume and the drag of the nose, is also superfluous, since its 
removal does not violate the constraints (1.13) imposed on the maximum admissible length of the nose 
shape. 

The drag of an optimum nose shape with contour containing the segment df  of the straight line 
r = R does not differ from that of a nose shape which, corresponding k = 1, is of length LI, 0 <_ l < 1, 
when the additional volume of its cylindrical part equals r~R2L(1 - l). Therefore, by formulae (1.9) 
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1 Ca 1.0822~ = 0"2-----706X2 
Cf~ : 1 - ~ ,  = C~(2_--~12, 0 < / < 1  (1.15) 

Formulae (1.14) yield the coefficient Ca of optimum nose shapes for 0 < Cn <- 0.25, and formulae 
(1.15) do the same for 0.5 _< Co -< 1. To the minimum (Ca = 0) and maximum (Co = 1) possible volumes 
there correspond the value l = 0 and the same infinite drag coefficients Cd. This latter fact is the result 
of using Newton's formula (1.1) in the slender body approximation (x '2 >> 1) which is violated for any 
x ,  however small, at fiat ends x = 0 and x = L. But if the first (full) version of Newton's formula is 
used, the drag coefficients of the flat endsx = 0 andx = L, 0 _ r ___ 1, turn out to be finite, though a 
maximum (Cd = 1). 

This fact, and the possibility of a vertical tangent at the leading point of nose shapes which are optimal 
in the slender-body approximation, justifies computing their drag coefficients with the complete Newton 
formula. 

We will now present the equations of "thin" optimum contours and formulae for the coefficients Ca 
and Ca, as found above. All the contours begin at the axis of symmetry and reach the point ~ = 11 = 1. 

Pointed contours beginning at ~ = 1 - l(0 < l < 1) 

~ = 1 - 1 + l ~  :u3, cn=l<_7~, • = 2 7 ! 9 ;  12; 0 < l < 1 ,  O<rl<l, 1 - 1 < ~ < 1  (1.16) 

This yields a pointed contour of maximum admissible length when I = 1 

1 

1 Cdt~) 271" ;3d~ 
= 112/3' CO-"  = 4' 7 = J09~X2+4 

Blunt contours beginning at ~ = 13 = 0 with less than "Newtonian" coefficients Co 

= l ( r l , -k)  0_<~___1, 0<r l_<l  0_<k<** 
1( 1, -k)  . . . .  

1 i.17/3d~ I (1.17) 

Cn = l (1 , -k )  ( l+k l l 2 )  l~' ,~2 = 2(1 _k)(1 +kTi2)z~ 2+r1~3 

The Newtonian contour, which also begins at ~ = rl = 0, corresponds to k = 0. For it 

I 

1413, 2 Cdo 18f rldrl 
= Co~ = 5' 7 = Jo9X 2+16rl ~ 

(1.18) 

Formulae (1.17) hold for blunt contours with coefficients Cn > Ct~o = 2/5, also beginning at ~ = 11 = O, 
but with k replaced by -k  for 0 < k < 1. For k = 0 they reduce to formulae (1.18) for a Newtonian contour, 
and for k = 1 they describe a contour with a horizontal tangent at ~ = q = 1, for which 

! 

= l(r  I, 1) 1 Ca1 = 212(1, 1)! (1 -rl2)2tSrldrl 
I (1 ,1 ) '  0 < g _ < l ,  0<11<1 ,  C n l = ~ ,  -~-  12(1,1)(l_r12)z,3 2+rl2/3 

Blunt contours beginning at ~ = rl = 0 and having a cylindrical segment l < ~ < 1, 11 = 1 (0 < l < 1) 

= ll(rl, 1) 
I (1 ,1 ) '  0 < 1 ] < 1 '  0 < ~ < l ,  0 < 1 < 1  

I 
Cd 212( 1, 1 )rio ( 1 -- 'r12)2/3~dl] 

Cta = 1 - ~ ,  ~ = 2(1,  1)(1 -112)2/3'[2+/2'q ,[ 213 

(1.19) 

Hence, for l = 1 we obtain the previous contour, and for l = 0 a "full" cylinder with Ct~ = Cd = 1. 
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2. O P T I M U M  NOSE SHAPES IN T H E  A P P R O X I M A T I O N  OF 
T H E  C O M P L E T E  N E W T O N  F O R M U L A  

If the complete Newton formula is used and the maximum admissible radius of the nose R is taken as 
the scale of both coordinates, the formulae for the coefficients Ca and Ca become (11' = dri/d~, ~' = d~/dri) 

! 1 

o,(rf>0) q '=0  0 1 + 

With this in mind, the Lagrange functional may be written as 

1 1 

= ca  + Z, c---~ 2f rldrl 
= + I n § I 

0,rl'>0 i f=0  

and its variation can be evaluated: 

8ca = 8,~ = L+zxn,-  ro_Anb + iX,§ - Xo_ + X,(n 2 -  n,2)lAg, :V Za+Ana +- Xd+Aga + 

n'>0 11'=0 ~'_>0 

~'=o 

X = 
~,2 1 + 3~ '2 3~ '2 -  1 

2rl~' y = n~,2 --1 Z = 1 1 - -  G = 1 1 - -  
2 ~ (1+~'2) 2 ( 1 + ~  '2) (1+~'2) 2' (1+~'2) 3 

(2.2) 

where b and t are the lower and upper points of the possible flat end bt, minus and plus subscripts indicate 
values before and after the corresponding point (moving from i to f ) ,  the relations 11' > 0, etc. indicate 
integration over sections with I"1' > 0, etc., and Ari and A t are the increments of the coordinates of points 
at which different segments are attached. 

Formulae (2.2) incorporate the terms written out in [2], where the variational problems were solved 
either with fixed sizes or with fixed radial size and volume; besides these terms, however, our formulae 
also include the integral over the cylindrical segments dfwith ri = 1 and ri' = 0, as well as terms containing 
Arid and A~. The latter appear in two cases: (1) if the optimum nose shape proves to be shorter than 
L; in that case, corresponding to the upper signs and subscripts in formulae (2.2), the generator begins 
on the axis of symmetry at a point i coinciding with d, and A~qd = 0; (2) if the optimum nose shape 
contains a cylindrical segment lq = 1; corresponding to this case in formulae (2.2) are the lower signs 
and subscripts, and in addition Arid and 5TI in the integrand of the integral over 11' = 0 are non-positive. 

Investigation of the terms on the right-hand side of the expression for 8Ca in formula (2.2) yields 
the necessary conditions for Ca to be a minimum, thus defining the optimum generator if. On two-sided 
extremum segments (TSES), where the variations 8~ are arbitrary, we have 

2-x-=rIIzn il -- c 
(1 + ~,2) j 

(2.3) 

with the constant of integration C suitably determined. 
The requirement that the coefficient of (~,)2 in formula (2.2) should be non-negative yields Legendre's 

necessary condition ~' > 1 /~ .  This condition, however, turns out to be too weak, and it may be replaced 
by the aforementioned inequality 

~'_> I (2.4) 

Indeed, at any point of a TSES one can introduce an infinitesimal flat end bt for which Al]b _< 0, while 
Arl t > 0 because the unvaried contour is smooth at that point. If condition (2.4) fails to hold, such 
i n c r e m e n t s  Ari b o r  AT] t reduce the drag. 
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t~ 

t~ 
t ~ ( 
O i ,  b 

d f , t  

i = d  i = d  L x 

Fig. 2 

Suppose the optimum contour contains a leading flat end (~ = 0) or a trailing flat end (~ -- L/R = 
1/x) which, because of the constraints (1.8) and (1.13), as previously [2-5], may appear as boundary 
extremum segments simultaneously in the sense of the both 0 and ~. At the points where they attach 
to the TSES, the increments Al~b or  Arlt are arbitrary. Consequently, as in [2-5], the following equalities 
must hold at the point b and t 

! 

= I ( 2 . 5 )  

that is, the TSES approach any fiat end at an angle of 45 ~ 
Different types of non-slender optimum axisymmetric nose shapes are shown in Fig. 2. They all differ 

in shape: "pointed" (contours 2, 3, 3') with ~ d = ~ ;  with leading flat end (1, 4-6), with a trailing flat 
end (3) and without a trailing flat end (1, 2, 3', 4, 5 and 6); in addition, they may have a cylindrical segment 
(6). For contours with a leading flat end ,  the points b and i coincide, but since the former adjoins the 
axis of symmetry of the left, ~_  = oo. For contours with a trailing fiat end, the point t coincides with f. 

For each fixed aspect ratio or x = R/L, the least drag is obtained with a blunt nose shape 1, 
corresponding to Newton's problem [2--4] with free volume. To construct it, the multiplier ~. in Eq. (2.3) 
must be equated to zero. As a result, owing to condition (2.5) at the point t, the equation of the 
Newtonian TSES is found to be 

rl ' _ 11, 

( 1 + ~,2)2 4 
(2.6) 

Taking the parameter to be q = ~' as in [1-6], we integrate Eq. (2.6), observing the conditions at the 
point d and f. After computing Cn = Ct~0 and Cd = Cdo, we obtain 

1] = •t (1+q2)2  
4q ' 

~qt,, ,  4 , 2 ~ 4 q f  
= ~ t ~ q  +4q  - / - 4 1 n q ) ,  l<_q<_qf, 1], - 

(1 + q~)2 

Cta0 = (q~-  1)(18q~ ~ + 123q~ + 373q~ + 673qf4 + 823q)-30)- lEOq/lnq/qf2 (2.7) 

'~ 60(1 + q~)6 

6 4 17q~ 2 2 2 3qf + lOqf + + 4qf lnqf  + 2 4( 1 + q f) 
Cdo = ,[ = 

�9 2 
2(1 + q~)4 qf(3q4f + 4qf - 7 - 41nqf) 

Ifq~ >> 1, then  q2 ~ 1 on the larger segment of the extremal and, because of the different definition of 
~, the equation of the extremal and the formulae for Ca0 and Cdo derived from formulae (2.7) are 
identical with the equations and formulae (1.11). 

For any non-zero x, for values of C~ note exceeding a certain quantity C~,  the optimum contours 
are short contours with ~i = ~d > 0 and pointed contours (~'i+ = ~ )  for ~ > 1/2 with trailing flat end 
(type 3), and for x < 1/2 with or without trailing flat end (curve 3 and curves of type 2 with trailing flat 
end). Indeed, in such cases the sign of A ~  is arbitrary. Therefore, one of the conditions for optimality 
is that the coefficient of Xd+ in Eq. (2.2) should vanish. This yields ~'d+ = 0 and ~'d+ = ~ ,  but ~'d+ = 0 
does not satisfy the necessary condition (2.4). Consequently, ~'d+ = ~ ,  and pointed nose shapes are 
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optimal. For them, one has C = 0 in Eq. (2.3), and in the case of a trailing flat end, the following holds 
on the extremal 

2~' 4~lt, q 
n = = (2.8) ~,(1 + ~'2)  2 ( 1 + q2)2  

where the multiplier )~ is expressed in terms of rlb using Eq. (2.5), which is in that case true at the point 
b. Equation (2.8) is integrated in the same way as (2.6). As a result one obtains, as in [2. 5] 

11 = 411bq ~ = 1 [ l + 3 q  2 ] 
2. 2 , ~ + 211b - 1  1 <q<**, 1l i ra - - - -  O, 

( l + q )  (1 +q2) 2 ' 

Ca 1 3 3  1 3 2  1. ~,/3{3Ct1"~ 2/3 (Cn~ 2/3 
T = ~'~11b, Cd = 1--~'~11b = 1--~t.~ ~'--~) =1--1.135 

1 
~i  = d = - - 211o "C 

(2.9) 

For fixed x, the solution (2.9) holds for values of rib that satisfy the inequality 

0 < rib -< rl~' = inf[1, l/(2x)] (2.10) 

The contours (2.9) are not slender over such substantial segments, but unlike solution (2.7), they have 
no analogues among contours designed in the slender-body approximation. 

If the second part of condition (2.10) is true with the sign "smaller than" and for coinciding points 
b and f, that is, if x < 1/2, then for such x, over a finite range of values of the coefficients Ca/x > 13/30, 
the optimum nose shape length will also be less than L. Unlike those already considered, in these nose 
shapes without a trailing flat end the inclination of the tangent at the point f_ is less than 45 ~ and 
consequently qf > 1. For such contours, formulae (2.9) are replaced by 

11 = q ( l+@)2  ~ _  1 l+3qf+2 (1+@)2(1+3q  2), 

q f( 1 + q2)2' X 2qf  2q f( 1 + q2)2 

4 2 2 
Cf~ = 45q f + 6q f + l, Ca = 15q f - 1  

'~ 23 �9 15qf3 20@(1 + @) 

l <q f  <q<.o  

(2.11) 

Hence, in particular, for a given x < 1/2 one can find the maximum qfm > 1 and, using that value, the 
maximum C'~/x > 13/30 for which optimum pointed nose shapes without a trailing fiat end defined by 
these formulae have a length L (curve 2 in Fig. 2). Namely, writing out the second equation to (2.11) 
at the point i, where ~i ---- 0 and qi ---- o% we obtain a quadratic equation whose solution gives 

qf  = + (2.12) 

If the pointed nose shape described by formulae (2.11) is slender, that is, x ~ 1, but qf >> 1, it can 
be shown using these inequalities that (taking account of the different scaling of the longitudinal 
coordinate) formulae (2.11) reduce to (1.12). 

The solutions (2.11), which yield nose shapes of length not exceeding the maximum admissible length 
L, do not depend on the latter. Everything proved previously [2, 5] for nose shapes that are optimal 
with respect to fixed volume and base radius remains valid for such shapes also. According to those 
results, the generators are concave. On the other hand, the generator of a Newtonian nose shape (curve 
I in Fig. 2) is convex [2-5]. For fixed x, therefore, the volume Ca0 of a blunt nose shape (see the formula 
for Ca0 in (2.7)) necessarily exceeds the volume C~ of the pointed concave nose shape defined by the 
penultimate equation of (2.11), which corresponds to the same value of x and the value of q~ defined 
from that value by formula (2.12). If Ca > C~, the contours of the optimum nose shapes have leading 
fiat ends and end at the pointfwith a finite inclination of the tangent (of the type of curves 4 and 5 in 
Fig. 2). The shape of their TSES is defined by Eq. (2.2) with a constant C ~ 0. As above, it is integrated 
by introducing a parameter q with 1 = qt+ < q <- ~ .  Having solved Eq. (2.3) - a quadratic equation in 
"q = "q(q) - for that case, we find 
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-- + - =- +K 
rl• = ~" (1 + q2)2 ( 1 + q2)4 

K =  [( 2Of ~,] 1 2' C = [ 2qyrlt 
I + q~)2 1 - n ,  L(1 + q~)2 

1] n, 
(2.13) 

The Newtonian optimum nose shape corresponds to K = 0. As k --~ 0, one obtains finite rl values if 
the minus sign is taken in the first equation of (2.13). For any x, therefore, convex optimum contours, 
including some similar to Newtonian contours, are obtained for q = rl-(q). For them 

q qf 

n = n (q), { = q r l - n , -  n - ( q ) ~ ,  1 <-q<ql; ~ = q f - r l t -  "q-(q)dq 
1 1 

Ca qf~rl~ q' l l 1..._~+ q / -  2 _ = 2 f i n  (q)] qdq - ~IDl-(q)laaq, Ca ~rl,+ - - - - ~  
"X l l+q~ I ( l+ql)  2 

(2.14) 

Since corresponding to the equality C~a = C~a0 one has a pointed concave generator if, it follows that 
when Ca < C~0 decreases the optimum generators must become convex-concave with convex initial 
segment and concave end segment. It can be shown that at the point of inflection separating these 
segments, the expression under the radical sign in formula (2.13) vanishes, and q takes its maximum 
value for the contour, qm. Thus, at the point of inflection 

m 2  

(p(qm) _ q = -~,C (2.15) 
(1 + qm2)4 

Moreover 1 < qf _< qm, and ~(qm) decreases monotonically for qm > 1 and vanishes at qm = oo. 
Accordingly, qm as a function of )~C is determine by rapidly convergent iterations (k is the number of 
the iteration) 

3 31 I k)i] qm I, zk+1 = zk l -KC, = Zo = I (1G 7z (2.16) 

When qf = qm, the point of inflection coincides with the end point f. For a Newtonian solution 
X = 0, and the value of qm determined by formula (2.15) or by iterations (2.16) will equal infinity, so 
that the equality qf0 = qm will naturally not hold. Accordingly, the solution (2.14) holds within limits 
from q/ = qf0 to the first point where qm = q[. Then all the integrals with respect to q split into two: 
from 1 to qm, and from qm to qf (or to q), I1 = rl-(q) in the first and with rl = rl+(q) in the second 

q 

q = ll-(q), ~ = qrl-(q) - 11, - Irl-(q)dq, 1 < q < qm 

i 

qm qm 

rl = "q+(q), ~ = qrl+(q) - rl, - I rl-(q)dq + I rl+(q)dq' qm > q > qf 
1 q 

I q~ qm Ct'l=qf31"l~ ~qi = q f - ~ ' -  I rl-(q)dq+ I ~+(q)dq' T - [~-(q)13dq+ 
| q/ | 

(2.17) 

rn m m 2 
q 2 q _ 2 q + 

1 + 3 11, l .,,rD1(q)] -- ~r[11 (q)] -- 
+ S I [ r l  (q)l dq, Ca = 2 + 7 - - - - " - 5 + z j  2 A q a q - z J - .  2- 2qaq 

q/ I +qf i (I +q ) qf(l +q ) 
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Figure 3 illustrates the transition from convex optimum contours to convex-concave ones. The thick 
curve represents the function qm = qm(qf) for Z = 1/4. For such x, by the last formula of (2.7), 
q / -  qf0 -- 5.48. As mentioned before, qm(qf0 ) = oo. The optimum TSES for 4.75 < qf < qfo are convex. 
To construct them one first uses the third equation of (2.14) to determine ~t = 1]t(qf), then finding 

= ?~(qf) and C = C(qf) from formulae (2.13), and finally qm = qm(qf) from Eqs (2.15) and (2.16). 
Corresponding to the point at which the curve is tangent to the dashed straight line qm = qf is an optimum 
contour whose curvature vanishes at its end point. For lower qf values one has convex-concave optimum 
generators. To compute them, one first determines qm(qf), ~(qf) and C(qf) by simultaneous solution of 
Eq. (2.15) and the fifth equation of (2.17) with q• ~, and C from formulae (2.13). By Fig. 3, to the 
left of the point of tangency one has qm(qf) > qf. Now, however, unlike the right branch, this is a natural 
consequence of the presence of an optimal generator of a concave trailing segment. As q / ~  q'fl, where 
for "c = 1/4, by Eq. (2.12), q~ = 2.535, the optimum contour with leading fiat end tends, outside a small 
neighbourhood of the point, to a pointed contour of the same length. In that case, tit ---) 0, qm ___) oo, 
but the value of qt+ remains constant (equal to unity). 

For short nose shapes ('c > 1/2), some of the optimum contours have two fiat ends (leading and 
trailing), while the TSES joining them consists of convex (leading) and concave (trailing) segments. At 
the point b where the extremal attaches to the trailing fiat end, ~b < 1, qb- = 1. When designing such 
contours, qf in the appropriate inequality of (2.17) should be replaced by 1, and formulae (2.13) for 3, 
and C and the three last equalities of (2.17) are replaced by 

m q 
1 C = -rlbrlt 1 j 

= 2(Tlb+~t ), 2(rlb+~, ), ~ = "qb--rl,+ ['q+(q)-rl-(q)]dq 
l 

3 3 qm + 3 - 3 q _ + 2 112 2 m 2 
-'~" = T + ~ C f ]  ' l i b  - -  ' l i t  [1"1 (q)] 3 [~ (q)] dq, C a = I + - - ~  + 2 J" [rl (q)] - [rl (q)] qdq 

I 1 ( 1 + q2)2 

(2.18) 

For any x and C~ over a finite range of values (Co= _> Cu > Cta0, where C~= is defined below, and 
Cn0 for the same x corresponds to a Newtonian nose shape) the optimum generators, as well as the 
Newtonian contour, have a leading fiat end and a convex TSES ending at the point f (curves of type 
5 in Fig. 2). Formulae (2.14) hold for these generators, with qN < qf < oo. The coefficient Cta~ corresponds 
to the optimum generator with a horizontal tangent at the point f, that is, with qf = oo. For this generator, 
by the last two formulae of (2.13) 

2 ~  = 2 C  = - q t ( 1 - q ~ ) - l < 0  (2.19) 

For 1 > C~ > Cta=, the optimum contour (curve 6 in Fig. 2) has, besides the leading flat end it and 
TSES td, a cylindrical boundary extremum segment df. In that case the sign of A ~  is arbitrary, and one 
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of the optimality conditions is that the coefficient Xd_ in Eq. (2.2) should vanish. This occurs at 
4 -  = 0 and ~_ = ~ ,  but ~_ = 0 does not satisfy condition (2.4). Therefore 4 -  = oo and the TSES td 
is attached to the cylindrical segment without a break. With this in view, the parametric notation for a 
TSES with a horizontal tangent at f may be represented in the form 

l 2 
11 - q +X(q,k),  X(u,~.) = . __u_ + 

~,(I +q2)2 ~2(q + U2) 4 1 

= 1 - X(1, ~,) + 9 2 (  1 - q2) q - q + qx(q, ~) - j'[X(u, K) - 1 ]du, 
2K( 1 + q2)2 I 

l ~ q ~  

(2.20) 

Having written the second expression of (2.20) at the point f, we obtain 

I 

(2.21) 

Given % one finds k from Eq. (2.21) and, using ~., one employs Eq. (2.18) to find the tit of the flat end. 
Then Cu and Ca may be computed from formulae (2.1) and with rl = rl(q, K) as in the first formula of 
(2.20), using the formulae 

= - - - 7 -  + (1 -rl3)dq, Ca" = 2 + 1 (1 + q2)2q q (2.22) 

If, for fixed x, the given volume ~ is such that Ct~ < Ca < 1, then the optimum contour is a contour 
(curve 6 in Fig. 2) with leading flat end it and cylindrical end section df  smoothly connecting with the 
TSES td. The TSES of the all such nose shapes are constructed by formulae (2.19)-(2.21) with the given 
value of x replaced by a quantity x ~ varying in the range x < ~~ < ,~. Formula (2.22) holds for finding 
the drag coefficients Cd of these nose shapes, after replacing x by xo, ~. by ~o, rl by rl ~ and ]]t by q~. Only 
the formula for Ca is modified: taking the volume of the cylindrical segment into account, that formula 
is written as 

Co = C ~ + x ~  C~x 1-r l~3+~i(1-r l~ x < ' c ~  

I 

The "degree" sign indicates quantities and functions defined by the previously presented formulae for 
z~ > x, and z ~ = ~ gives a blunt cylinder with C d = Ca = 1. 

3. C O M P U T A T I O N A L  RESULTS 

Some results of computations carried out with the solutions obtained above are in presented in Figs 4 
and 5. Figure 4 illustrates contours with z = 1/2 and x = 1/4, which are optimal for different values of 
Cta, with the following correspondence of the contour numerals (labelling the curves), Ca values and 
drag coefficients Cd 

1 2 3 4 5 6 7 8 9 10 11 12 
C a 0.014 0.22 0.44 0.59 0.86 0.007 0.11 0.24 0.41 0.52 0.72 0.93 
C d 0.90 0.35 0.16 0.21 0.46 0.90 0.35 0.10 0.049 0.063 0.15 0.46 

Contour I for ~ = 1/4 yields as a short (aspect ratio less than the maximum admissible value 1/~ = 2) 
pointed nose shape with leading fiat end, contour 2 yields a single pointed configuration for x = 1/2 of 
maximum admissible length with qf = 1, and curve 3 yields a Newtonian nose shape with leading fiat 
end. Curve 4 is the generator of a nose shape with leading fiat end and TSES of maximum length with 
a horizontal tangent at the end point (qf = ~ for ~ = 1/x = 2). Finally, the nose shape 5 has two boundary 
extremum segments - a large leading fiat end and a fairy long cylindrical generator r ~ R. 
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For "c = 1/4, the first two contours 6 and 7 are identical in shape and drag coefficients with contours 
1 and 2. The non-cylindrical initial segment of contour 7 coincides with contour 5 at x = 1/2, which 
implies that their drag coefficients are equal. The slender-body condition (x '2 >> 1) is satisfied over the 
entire pointed generator 8. On the Newtonian contour 9, on contour 10 with a TSES of maximum length 
and qf = o% and on contour 11 with a horizontal section, the condition is violated only in a small 
neighbourhood (especially with respect to r 2) of the axis of symmetry. The drag of these bodies is close 
to that of nose shapes designed in the slender-body approximation. 

The thick curves in Fig. 5 show the wave drag coefficients of the optimum nose shapes designed 
according to the results of Section 2 for x = 1/8, 1/4, 1/2, 1, 2, that is, for both large and small aspect 
ratios (from 8 to 1/2). For these x values, the curves Ca = Cd(X, Co) have been computed for all possible 
0 <_ Co < 1. The extreme values correspond to nose shapes with leading fiat end (Co = 1) and trailing 
flat end (Co = 0) and the same Cd = 1 for any x. 

The marks on the thick curves indicate points corresponding to the characteristic solution listed above. 
The small circles represent Newtonian nose shapes which, for fixed "c, possess minimum drag (as they 
should). Between the circles and the triangles, the optimum nose shapes (for Coo < Co < Co . )  have 
a leading flat end and convex TSES. The triangles represent maximally thick nose shapes of this type 
with a horizontal tangent at the end point (qy = 0% Co = Co.) .  To the right of the triangles, the optimum 
contours consist of a leading flat end, convex TSES, and an end cylinder r - R. 

Between the circles and crosses the optimum generators (C~ < Coo) consist of convex TSES and 
leading flat end. At x < 1/2 the crosses represent contours for which the second derivative vanishes at 
the point f. For fixed x values, to the left of the crosses up rhombi, the optimum contours consist of a 
leading flat end and a TSES with a point of inflection, and from the rhombi to the squares the optimum 
contours are concave, pointed, and without a trailing fiat end (qi = oo ~i > 0). The rhombi represent 
those of the latter nose shapes with full length, and the squares represent pointed contours with 
ql = 1. At ~ > 1/2, from the crosses to the stars, the optimum contours consist of a leading flat end and 
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a TSES with a point of inflection; between the stars and the squares they consist of leading and trailing 
fiat ends and a TSES with a point of inflection. The stars represent those of the latter nose shapes for 
which qf = 1. At ~ = 1/2, the rhombus, square and star coincide (Ca = 13/60 = 0.22). The sections of 
the thick curves to the left of the squares correspond to truncated nose shapes (~/> 0) with concave, 
tapering TSES and trailing flat end. 

The thin curves represent the function Ca = Ca(z, Ca) at z = 1/8, 1/4, 1/2, 1, for nose shapes that 
are optimum in the slender-body approximation, as defined by formulae (1.16)-(1.19), that is, the 
complete Newton formula. Naturally, for all x the thin curves lie below the thick curves, but for z ___ 1/2 
the thin and thick curves are close together over a certain range of Cn values, which becomes wider as 
x decreases. As already noted, for the flats ends (Ca = 0 and Ca = 1) and similar configurations, the 
thin-body approximation is inapplicable, and computation of Ca in that approximation yields an unlimited 
increase in the wave drag coefficient. Formulae (1.16)-(1.19) eliminate the unlimited increase in Ca 
values. Moreover, when Ca = 0 and Ca --- 1 the correct optimum configurations are defined solely by 
the size constraints, irrespective of the formulae used for the pressure. That is why both thin and thick 
curves begin and end at the same points. Nevertheless, as the distance from those points increases, the 
thin curves yield markedly larger Ca values than the thick ones. As z decreases, such neighbourhoods 
become smaller. We recall that the equations and conditions obtained by Meile [1] permit the design 
of optimum nose shapes (in the slender-body approximation) only for 1/4 < Ca < 1/2. 

The dashed curves in Fig. 5 represent the functions Ca = Ce(x, Ca) for pointed (0 < Ca --- 1/3) and 
blunted (1/3 < Cn < 1) cones (with leading flat endx = 0). Ca increases from 0 to 1, the semi-aperture 
angle of the cones decreases monotonically from r~/2 to 0. The coefficients Ca and Ca of the cones are 
defined by the following Formulae (as for optimum bodies, rl~ is the size of the leading flat end in units 
of R) 

x2(1 + rit)(1 - r l , )  3 
l +rit+ri~l ' Cd = rl]+ /2+'~2(l-r1,) 2 Ca = 3 , 0 < r i t < l ,  0 < l < l  

The characteristics of the pointed cones are given by these formulae with rit = 0 and 0 < l < 1, and 
those of the blunted cones with I = 1 and 0 < tit <- 1. 

If Ca > 0.4, then by Fig. 5 the drag of the blunted cones for T < 1/2 (the dashed curves) significantly 
exceeds that of optimum nose shapes according to the slender-body approximation (the thin curves). 
When "c > I the situation is reversed, which is natural, since for such x the slender-body approximation 
is inapplicable over the whole range of Ca values. 

4. THE DRAG OF NOSE SHAPES C O M P U T E D  BY I N T E G R A T I N G  
E U L E R ' S  E Q U A T I O N S  

In the light of previous results [61, it is natural to expect that for Ca0 < Ca <- 1 the optimum contours 
obtained within the limits of Euler's equations should be analogous, that is, convex with leading fiat 
end and with or without a cylindrical segment. At the same time, it seems interesting to design optimum 
nose shapes within the limits of the Euler, Navier-Stokes, and Reynolds equations for lower volume 
coefficients, for which the optimum contours obtained in the approximation of the complete Newton 
formula have a point of inflection and a leading fiat end, as well as pointed contours without a leading 
flat end and with or without a trailing flat end. In these contours, all or a significant part of the generators 
that are optimal in the sense of Newton's formula are concave. In the flow of a gas - even an ideal gas 
- around concave generators (especially when there is a trailing flat end), separation is very probable. 
Under those conditions, when a scheme close to Newton's is used, the flow will take place not around 
the initial "solid" generator but around a similar "effective" contour, thus in principle modifying the 
results obtained when the model adopted assumes that the flow does not separate. 

To ascertain the degree to which Newton's formula is applicable to the treatment of these problems, 
let us compare the drag coefficients obtained using that formula with those found by integrating Euler's 
equations with the same program as in [6]. 

Contours of different types were compared: long (x = 1/8, 1/4, 1/2) and short (x = 1, 2) convex 
(including those with horizontal end segment), short (x = 1, 2) with trailing flat end, and long (~ --- 1/4) 
concave pointed bodies. The results of the computations are presented in the table. Apart from the 
coefficient Ca, and geometrical characteristics: x, Ca, upper ordinates of the leading end (/It), lower 
ordinates of the trailing flat end (rib), and left abscissae of the cylindrical segment ( ~  <_ 1) of the optimum 
nose shapes (index "opt"), table 1 also lists the analogous values computed for pointed ('qt = 0) and 
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Table i 

C doptN 
"c Co 1]teon ~to~ ~dopt l'lbopt CdoptN CdoptE CdconN 

1 1/8 0.70 0.66 0.03 5/8 1 0.043 0.045 0.100 

2 1/4 0.72 0.69 0.17 3/5 1 0.146 0.134 0.300 

3 1/2 0.73 0.70 0.38 5/8 1 0.304 0.250 0.607 
4 1 0.74 0.71 0.57 1 1 0.474 0.371 0.872 

5 2 0.84 0.83 0.76 1 1 0.684 0.528 0.949 

6 1/2 0.22 0 0 1 1 0.350 0.449 0.943 
6' 1/2 0.22 0 0 1 1 0.350 0.453 0.943 

7 1 0.22 0 0.07 1 0.82 0.594 0.899 0.857 
8 2 0.28 0 0.29 1 0.75 0.742 0.731 0.878 

C d opt E 

C dconE 

0.122 

0.327 
0.583 

0.815 
0.894 

1.120 
1.195 
1.234 
0.943 

Fig. 6 

Fig. 7 

blunted 01t > 1) cones (index "con") with the same Ca values and maximum admissible x (pointed cones 
with the same Ca values had lower x values). The wave drag coefficients determined by Newton's formula 
and by Euler's equations are indicated by N and E, respectively. 

The first five rows of the table correspond to values of x and Ca for which the optimum Newtonian 
nose shapes have a convex generator, a leading fiat end, and either include (rows I-3)  or do not include 
(rows 4 and 5) a cylindrical end segment. In the approximation of Euler's equations, flows around the 
Newtonian nose shapes in rows 1-8 and the blunted cones equivalent to them with respect to the value 
of the coefficient Ca and the maximum admissible values of '~ were computed for a perfect gas with 
adiabatic exponent ~: = 1.4 and free-stream Mach number M= = 5. Figure 6 shows typical flow patterns 
around Newtonian (left) and "conical" (right) nose shapes. The isomach curves are drawn with 
AM = 0.1. In flow around a blunted cone a trapped local separation occurs behind the break, as well 
as a strong oblique shock. The drag coefficients listed in the first five rows of the table, found by different 
methods, confirm the effectiveness of Newton's formula in designing convex optimum nose shapes. 

Unlike flow around convex nose shapes, even non-separating flow of an ideal gas around concave 
optimum Newtonian nose shapes (rows 6 of the table and Fig. 7, AM = 0.1, upper break a t M  = 1.7) 
and around equivalent cones is such that Cdcone < CdoptE. This situation does not change on changing 
to M~ = 10 and • = 1.1. Results for these M~ and ~: values are listed in row 6 of the table. The situation 
is even worse in the flow of an ideal gas around a comparatively slender body with trailing flat end (row 7), 
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Fig. 8 

Fig. 9 

which exhibits the formation of a complex shock wave system (Fig. 8). An important element of that 
system is a shock wave detached from the trailing fiat end and interacting with an oblique front shock 
(at the triple point) formed in flow around a slightly blunted spike. An oblique shock of the weak family 
goes from the triple point toward the body. Supersonic flow toward the body behind this shock, after 
deflection in the reflected shock, as in one of the configurations investigated in [7] (see also [8-12]), 
forms a low-entropy wall jet with high impact pressure. The result is high pressure at the trailing flat 
end and a high value of CdoptE. This case differs from the flows studies in [7-12] in the appearance at 
the wall of a thin high-entropy jet passing through the almost normal shock upstream of the leading 
fiat end. The appearance of this jet causes the flow to separate near the point where the oblique shock 
impinges upon it and the point where the TSES attaches to the trailing flat end. High-entropy gas filling 
and evacuating these separation zones is one mechanism for the unsteady oscillations arising in flow 
around such bodies. Figure 8 is a "snapshot" of the flow, and CdoptE in the table is the coefficient averaged 
over time. 

As x is increased, the optimum Newtonian nose shape with two flat ends (row 8) turns out, even in 
the approximation of Euler's equations, to be slightly superior to the equivalent cone. However, as in 
the case of the body of row 7, separating flow around it is unsteady. This is illustrated in Fig. 9, which 
represents two instantaneous pictures of isomachs and particle trajectories (curves tangent to the velocity 
vector). 

The dynamics of the transient depends on the number of the cells N in the difference grid. In the 
example, 6 steady flow was obtained only with the coarsest ~rid (N = 2 ), that is, with high schematic 

. . . . .  - 8 10  12 14 . v viscosity. Intense oscdlatlons were observed in gnds with N = 2 , 2  , 2 , 2 . The time-averaged alues 
of CdoptE for these grids were 0.757, 0.704, 0.704, 0.729. 

5. C O N C L U S I O N  

Computations of optimum Newtonian nose shapes with 0 < Ca < Ca0 in an ideal gas flow, which are 
of interest in themselves, imply the urgent need to analyse the formulation of the initial variational 
problem. In practice, specification of the volume of the nose shape fl (or, what is the same thing, the 
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coefficient Cta) is conditional either on the need to place several objects (the "working load", "instruments", 
etc. ) of  fixed total volume D_~ in the. nose, or  on specification of  the mass mf of  the working load. Obviously, 
for the p lacement  o f  a load of  given volume ~s the volume f~ must  satisfy the inequality f~ > flf.  I f  
f2f < ~0,  where  f~0 corresponds  to the solution o f  Newton ' s  p rob lem with free volume,  this will yield 
the solution o f  the problem. If  the specification o f  rnf defines the distance or  final speed of  the aircraft, 
the mass of  the nose section m will satisfy the inequality m < kmf  with a given constant  k exceeding 
unity. This, as it were, imposes an upper  limit f~ < D.s = km~/p on the volume of  the nose section, where  
9 is some effective density o f  the working load. I f  f~f < D.0, however,  that  is not  the case, because then 
a nose section with f~ = f~0 may be made  partially empty, and the solution again reduces  to the solution 
o f  Newton ' s  p rob lem with free volume. As a result, as can be seen in Fig. 5, when  f~f < f~0 a significant 
reduct ion in the drag may be obta ined (by a significant factor  if x > 1). 

We are grateful to N. I. Tillyayeva, who noticed an incompleteness  in the solution of  [1] when  trying 
to use it in tests of  a genetic opt imizat ion algorithm. 

This research was suppor ted  financially by the Russian Founda t ion  for Basic Research (02-01-00422 
and 05-01-00846) within the framework of  the "State Support  for Leading Scientific Schools" p rogramme 
(Nsh-2124.2003.1). 
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